
© 2006 GridCOMP Grids Programming with components. An advanced component platform for an effective invisible grid
is a Specific Targeted Research Project supported by the IST programme of the European Commission (DG Information Society and Media, project n°034442)

Grid programming with components:
an advanced COMPonent platform
for an effective invisible grid

Adaptative Behavior
with GCM

M a r c o A l d i n u c c i , M . D a n e l u t t o , S . C a m p a
U n i v e r s i t y o f P i s a , I t a l y

D . L a f o r e n z a , N . T o n e l l o t t o , P . D a z z i
I S T I - C N R , I t a l y

October 31th, 2007
Beijing, China

北京 - 中华人民共和国

http://en.wiktionary.org/wiki/%E4%B8%AD
http://en.wiktionary.org/wiki/%E4%B8%AD
http://en.wiktionary.org/wiki/%E5%8D%8E
http://en.wiktionary.org/wiki/%E5%8D%8E
http://en.wiktionary.org/wiki/%E4%BA%BA
http://en.wiktionary.org/wiki/%E4%BA%BA
http://en.wiktionary.org/wiki/%E6%B0%91
http://en.wiktionary.org/wiki/%E6%B0%91
http://en.wiktionary.org/wiki/%E5%85%B1
http://en.wiktionary.org/wiki/%E5%85%B1
http://en.wiktionary.org/wiki/%E5%92%8C
http://en.wiktionary.org/wiki/%E5%92%8C
http://en.wiktionary.org/wiki/%E5%9B%BD
http://en.wiktionary.org/wiki/%E5%9B%BD

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Outline

Motivation
why adaptive and autonomic management

why skeletons

Behavioural Skeletons
parametric composite component with management

functional and non-functional description

families of behavioural skeletons

GCM implementation
some hints today, much more tomorrow

Nicola Tonellotto and Patrizio Dazzi talk at “ProActive and GCM Tutorial and Hands-On
Grid Programming” (Thursday 15,30-16,30)

preliminary experiments and performances

2

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

CGM model key points

Hierarchic model
Expressiveness

Structured composition

Interactions among components
Collective/group

Configurable/programmable

Not only RPC, but also stream/event

NF aspects and QoS control
Autonomic computing paradigm

3

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Why Autonomic Computing

// programming & the grid
concurrency exploitation, concurrent activities set up, mapping/
scheduling, communication/synchronisation handling and data
allocation, ...

manage resources heterogeneity and unreliability, networks latency and
bandwidth unsteadiness, resources topology and availability changes,

4

... and a non trivial QoS for applications
not easy leveraging only on middleware

our approach:
high-level methodologies + tools

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Autonomic Computing paradigm

5

Monitor Plan

Execute

Analyse
broken
contract

next
configuration

QoS data

monitor: collect execution stats: machine load, service time, input/output queues
lengths, ...
analyse: instantiate performance models with monitored data, detect broken contract, in
and in the case try to detect the cause of the problem
plan: select a (predefined or user defined) strategy to re-convey the contract to validity.
The strategy is actually a “program” using execute API
execute: leverage on mechanism to apply the plan

C1

C2

C3

C4

C5

C6

Managed
components

Manager

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Why skeletons 1/2

Management is difficult
Application change along time (ADL not enough)

How “describe” functional, non-functional features and
their inter-relations?

The low-level programming of component and its
management is simply too complex

Component reuse is already a problem
Specialising component yet more with management
strategy would just worsen the problem

Especially if the component should be reverse engineered
to be used (its behaviour may change along the run)

6

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Why skeletons 2/2
Skeletons represent patterns of parallel computations
(expressed in GCM as graphs of components)

Exploit the inherent skeleton semantics
thus, restrict the general case of skeleton assembly

graph of any component ➠ parametric networks of
components exhibiting a given property

enough general to enable reuse

enough restricted to predetermine management strategies

Can be enforced with additional requirements
E.g.: Any adaptation does not change the functional
semantics

7

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Behavioural Skeletons idea

Represent an evolution of the algorithmic skeleton
concept for component management

abstract parametric paradigms of component assembly

specialized to solve one or more management goals
self-configuration/optimization/healing/protection.

Are higher-order components

Are not exclusive
can be composed with non-skeletal assemblies via standard
components connectors

overcome a classic limitation of skeletal systems

8

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Behavioural Skeletons
proprieties

Expose a description of its functional behaviour

Establish a parametric orchestration schema of
inner components

May carry constraints that inner components are
required to comply with

May carry a number of pre-defined plans aiming
to cope with a given self-management goal

Carry an implementation (they are factories)

9

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Be-Skeletons families

Functional Replication
Farm/parameter sweep (self-optimization)

Simple Data-Parallel (self-configuring map-reduce)

Active/Passive Replication (self-healing)

Proxy
Pipeline (coupled self-protecting proxies)

Wrappers
Facade (self-protection)

Many others can be borrowed from Design Patterns

10

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Functional replication

Farm
S = unicast, C = from_any, W = stateless inner component

Data Parallel
S = scatter, C = gather, W = stateless inner component

Fault-tolerant Active Replication
S = broadcast, C = get_one_in_a_set, W= stateless inner ...

...

11

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W
C

AC

Functional
server port

Functional
client port

AM

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W

AC

Functional
server port

AM

stream stream RPC

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Functional replication

Meant to parametrically expose all allowed adaptation

Any AM policy that does not change this semantics is correct
As an example changing i in this schema is correct
Functional semantics is invariant from i, non-functional one is not
(and changing i means changing the number of Ws for self-* purposes

12

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W
C

AC

Functional
server port

Functional
client port

AM

Wi(ini, outi) !
ini.get > tk > process(tk) > r > (outi.put(r) | Wi(ini, outi))

Functional behaviour
description

(orchestration)

system(data, S,G, W, in, out, N) !
S(data, in) | (| i : 1 ≤ i ≤ N : Wi(ini, outi)) | C(out)

system(data, S,G, W, in, out, N) !
S(data, in) | (| i : 1 ≤ i ≤ N : Wi(ini, outi)) | C(out)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

ABC

GCM
implementation

13

W

W

W

W

W

W

1. Choose a schema
(.e.g. functional replication)
ABC API is chosen
accordingly

2. Choose an inner component
(compliant to Be-Ske constraints)
3. Choose behavior of ports

(e.g. unicast/from_any,
 scatter/gather)

W

W

B/LC

S CS C

4. Wire it in your application.
Run it, then trigger adaptations

AM

ABC = Autonomic Behaviour Controller (implements mechanisms)
AM = Autonomic Manager (implements policies)

B/LC = Binding + Lifecycle Controller

5. Possibly, automatize the
process with a Manager

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Farm example (Mandelbroot)
14

screen
output

mandel
broot

mandel
broot

mandel
broot

ABC

lines
gen S C

mandel
broot

mandel
broot

mandel
broot

farm

unicast from_any

get_service_time

change // degree

raise "contract violation"

new contract (e.g. Ts<k)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Not just farm (i.e. param sweep)

Many other skeletons already developed for GCM
some mentioned before

Easy extendible to stateful variants
imposing inner component expose NF ports for state access

Policies not discussed here
expressed with a when-event-if-cond-then-action list of rules

some exist, work ongoing ...

16

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Log of the Run (Explained)

17

 1

 1.5

 2

 2.5

 3

 3.5

 4

T
h
ro

u
g
h
p
u
t
(t

a
s
k
s
/s

)

Avg. farm throughput
QoS contract

 0
 2
 4
 6
 8

 10
 12

110100908070605040

N
.
o
f
P

E
s

Time (minutes)

N. of workers
N. of PEs with artificial load

past future

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

new workers are mapped
on empty nodes

new workers are mapped on nodes already
running other instances of the same component

0

1,500

3,000

4,500

6,000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Overheads

18

Restart New Stop

O
ve

rh
ea

d
(m

s)

N. of workers

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Proactive/Java Appears quite
heavyweight

w.r.t. other approaches

19

19

!"# $"#

%&#

#'#

!"!#!$%&'("!)*+$#!("&+*",&-.&/0,1

!"# $"#

#'#

%&#

!"# $"#

%&#

#'#

%&#

2+('3,,

("&/04

!"$%&'("!)*+$#!("&+*",&-.56&/0,1

$"$%7832%$" 9:9

;:9&-<!==%3>$+31!"#$%&'()*#'(&"$'

"33=&6&/0 /04

+,-.'/0-12$3*#'(&"$'

343'*#3

2$+<(=&+3$'?3,&$
+3'("@A,$@3&2(!"#

+3'("@B&%$#3"'7

+3'("@B&#!<3

<("!#(+

#!<3

C$*"'?-D/9E/041 $'.

4("5*6%2",%(*#'(&"$'

D/,&$+3
+3=!,#+!F*#3=

G?3&"3>&2+('3,,
'("#$'#,&#?3&9:9

Fig. 2. Reconfiguration dynamics and metrics.

TCP/IP or Globus provided communication channels. The two applications are
composed by one parmod and two sequential modules. The first is a data-parallel
application receiving a stream of integer arrays and computing a forall of sim-
ple function for each stream item; the matrix is stored in the parmod shared
state. The second is a farm application computing a simple function on different
stream items. Since Rt also depends on sequential function cost, in both cases
we choose sequential functions with a close to zero computational cost in order
to evaluate mechanism on the finest possible grain.

The reconfiguration overhead (Ro) measured during our experiments, with-
out any reconfiguration change actually performed, is practically negligible, re-
maining under the limit of 0,004%, the measurement of the other two metrics
are reported in Table 1.

Notice that in the case of a data-parallel parmod, Rl grows linearly with
(x + y) for the reconfiguration x → y for both kinds of reconf-safe points, and
depends on shared state size and mapping. Farm parmod cannot be reconfigured
on-barrier since it has no barrier, and achieves a negligible Rl (below 10−3 ms).
This is due to the fact that no processes are stopped in the transition from one
configuration to the next. Rt, which includes both the protocol cost and time to
reach next reconf-safe point, grows linearly with (x + y) for the former cost and
heavily depends on user-function cost for the latter.

parmod kind Data-parallel (with shared state) Farm (without shared state)

reconf. kind add PEs remove PEs add PEs remove PEs

of PEs involved 1→2 2→4 4→8 2→1 4→2 8→4 1→2 2→4 4→8 2→1 4→2 8→4

Rl on-barrier 1.2 1.6 2.3 0.8 1.4 3.7 – – – – – –
Rl on-stream-item 4.7 12.0 33.9 3.9 6.5 19.1 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Rt 24.4 30.5 36.6 21.2 35.3 43.5 24.0 32.7 48.6 17.1 21.6 31.9

Table 1. Evaluation of reconfiguration overheads (ms). On this cluster, 50 ms are
needed to ping 200KB between two PEs, or to compute a 1M integer additions.

ASSIST/C++ overheads (ms)

M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and C. Zoccolo.
Dynamic reconfiguration of grid-aware applications in ASSIST.

Euro-Par 2005, vol. 3648 of LNCS, Lisboa, Portugal. Springer Verlag, August 2005.

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Proactive Communication Time
(Int)

20

Communication time

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000

int[N]

ti
m

e
 (

m
s)

int[]

Communication Bandwidth (Theoretical 12800 KB/s)

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000

int[N]

B
a
n

d
w

id
th

 (
K

B
/

s)

int[]

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Variations and Flavours

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W
C

AC

Functional
server port

Functional
client port

AM

streaming
producer

streaming
consumer

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W

AC

Functional
server port

AM

RPC
producer-consumer

RPC
producer-

consumers

or in general ...

skeleton
behaviour
(e.g. Orc)

Sk

W

...

W

W

Cj

AC

AM

S1

...

C1

...

RPC or
streaming

data dependencies

RPC or
streaming

data dependencies

and even more ...

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Abstracting Out Variants
n client and y server ports

synchronous and/or asynchronous

stream and/or RPC

programmable, possibly nondeterministic, relations among ports
wait for an item on port_A and/or one item on port_B

in general, any CSP expression

But ... be careful, this is the ASSIST model
all features described above + distributed membrane + autonomicity,
QoS contracts, limited hierarchy depth (i.e. 2)

sophisticated C++ implementation, language not easy to modify

GCM should be enough expressive and not too complex
we consider ASSIST as the complexity asymptote

22

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

1. M. Aldinucci, F. André, J. Buisson, S. Campa, M. Coppola, M. Danelutto, and C. Zoccolo. Parallel program/
component adaptivity management. In G. R. Joubert, W. E. Nagel, F. J. Peters, O. Plata, P. Tirado, and
E. Zapata, editors, Parallel Computing: Current & Future Issues of High-End Computing (Proc. of PARCO 2005,
Malaga, Spain), volume 33 of NIC, pages 89–96, Germany, Dec. 2005. John von Neumann Institute for
Computing.

2. M. Aldinucci, F. André, J. Buisson, S. Campa, M. Coppola, M. Danelutto, and C. Zoccolo. An abstract schema
modeling adaptivity management. In S. Gorlatch and M. Danelutto, editors, Integrated Research in Grid
Computing, CoreGRID. Springer, Dec. 2006.

3. M. Aldinucci, G. Antoniu, M. Danelutto, and M. Jan. Fault-tolerant data sharing for high-level grid
programming: A hierarchical storage architecture. In M. Bubak, S. Gorlatch, and T. Priol, editors, Achievements
in European Research on Grid Systems, CoreGRID Series, pages 67–81. Springer, Nov. 2007.

4. M. Aldinucci and A. Benoit. Automatic mapping of ASSIST applications using process algebra. In Proc. of
HLPP2005: Intl. Workshop on High-Level Parallel Programming. Warwick University, Coventry, UK, July
2005.

5. M. Aldinucci and A. Benoit. Towards the automatic mapping of ASSIST applications for the grid. In S. Gorlatch
and M. Danelutto, editors, Proc. of the Integrated Research in Grid Computing Workshop, volume TR-05-22,
pages 59–68, Pisa, Italy, Nov. 2005. Università di Pisa, Dipartimento di Informatica.

6. M. Aldinucci and A. Benoit. Towards the automatic mapping of ASSIST applications for the grid. In S. Gorlatch
and M. Danelutto, editors, Integrated Research in Grid Computing, CoreGRID, pages 73–87. Springer, Dec.
2006.

7. M. Aldinucci and A. Benoit. Automatic mapping of ASSIST applications using process algebra. Parallel
Processing Letters, 2008.

8. M. Aldinucci, C. Bertolli, S. Campa, M. Coppola, M. Vanneschi, L. Veraldi, and C. Zoccolo. Self-configuring and
self-optimising grid components in the gcm model and their ASSIST implementation. Technical Report TR-06-13,
Università di Pisa, Dipartimento di Informatica, Italy, Aug. 2006.

9. M. Aldinucci, C. Bertolli, S. Campa, M. Coppola, M. Vanneschi, L. Veraldi, and C. Zoccolo. Self-configuring and
self-optimizing grid components in the GCM model and their ASSIST implementation. In Proc of. HPC-GECO/
Compframe (held in conjunction with HPDC-15), IEEE, pages 45–52, Paris, France, June 2006.

10. M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Danelutto, P. Pesciullesi, R. Ravazzolo, M. Torquati,
M. Vanneschi, and C. Zoccolo. ASSIST demo: a high level, high performance, portable, structured parallel
programming environment at work. In H. Kosch, L. Böszörményi, and H. Hellwagner, editors, Proc. of 9th Intl.
Euro-Par 2003 Parallel Processing, volume 2790 of LNCS, pages 1295–1300, Klagenfurt, Austria, Aug. 2003.
Springer.

11. M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Danelutto, P. Pesciullesi, R. Ravazzolo, M. Torquati,
M. Vanneschi, and C. Zoccolo. A framework for experimenting with structure parallel programming environment
design. In G. R. Joubert, W. E. Nagel, F. J. Peters, and W. V. Walter, editors, Parallel Computing: Software
Technology, Algorithms, Architectures and Applications (Proc. of PARCO 2003, Dresden, Germany), volume 13
of Advances in Parallel Computing, pages 617–624, Germany, 2004. Elsevier.

12. M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini, P. Pesciullesi, L. Potiti, R. Ravazzolo, M. Torquati,
M. Vanneschi, and C. Zoccolo. The implementation of ASSIST, an environment for parallel and distributed
programming. In H. Kosch, L. Böszörményi, and H. Hellwagner, editors, Proc. of 9th Intl Euro-Par 2003 Parallel
Processing, volume 2790 of LNCS, pages 712–721, Klagenfurt, Austria, Aug. 2003. Springer.

13. M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin, L. Scarponi, M. Vanneschi, and
C. Zoccolo. Components for high performance grid programming in grid.it. In V. Getov and T. Kielmann, editors,
Proc. of the Intl. Workshop on Component Models and Systems for Grid Applications, CoreGRID series, pages
19–38, Saint-Malo, France, Jan. 2005. Springer.

14. M. Aldinucci, S. Campa, M. Coppola, S. Magini, P. Pesciullesi, L. Potiti, R. Ravazzolo, M. Torquati, and
C. Zoccolo. Targeting heterogeneous architectures in ASSIST: Experimental results. In M. Danelutto,
M. Vanneschi, and D. Laforenza, editors, Proc. of 10th Intl. Euro-Par 2004 Parallel Processing, volume 3149 of
LNCS, pages 638–643. Springer, Aug. 2004.

15. M. Aldinucci, M. Coppola, S. Campa, M. Danelutto, M. Vanneschi, and C. Zoccolo. Structured implementation of
component based grid programming environments. In V. Getov, D. Laforenza, and A. Reinefeld, editors, Future
Generation Grids, CoreGRID series, pages 217–239. Springer, Nov. 2005.

16. M. Aldinucci, M. Coppola, M. Danelutto, N. Tonellotto, M. Vanneschi, and C. Zoccolo. High level grid
programming with ASSIST. Computational Methods in Science and Technology, 12(1):21–32, 2006.

17. M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. ASSIST as a research framework for
high-performance grid programming environments. Technical Report TR-04-09, Università di Pisa, Dipartimento
di Informatica, Italy, Feb. 2004.

18. M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. ASSIST as a research framework for
high-performance grid programming environments. In J. C. Cunha and O. F. Rana, editors, Grid Computing:
Software environments and Tools, chapter 10, pages 230–256. Springer, Jan. 2006.

19. M. Aldinucci and M. Danelutto. Stream parallel skeleton optimization. In Proc. of PDCS: Intl. Conference on
Parallel and Distributed Computing and Systems, pages 955–962, Cambridge, Massachusetts, USA, Nov. 1999.
IASTED, ACTA press.

20. M. Aldinucci and M. Danelutto. An operational semantics for skeletons. In G. R. Joubert, W. E. Nagel, F. J.
Peters, and W. V. Walter, editors, Parallel Computing: Software Technology, Algorithms, Architectures and
Applications (Proc. of PARCO 2003, Dresden, Germany), volume 13 of Advances in Parallel Computing, pages
63–70, Germany, 2004. Elsevier.

21. M. Aldinucci and M. Danelutto. Algorithmic skeletons meeting grids. Parallel Computing, 32(7):449–462, 2006.
DOI:10.1016/j.parco.2006.04.001.

22. M. Aldinucci and M. Danelutto. Skeleton based parallel programming: functional and parallel semantic in a single
shot. Computer Languages, Systems and Structures, 2006. doi: 10.1016/j.cl.2006.07.004, in press.

23. M. Aldinucci, M. Danelutto, and J. Dünnweber. Optimization techniques for implementing parallel skeletons in
grid environments. In S. Gorlatch, editor, Proc. of CMPP: Intl. Workshop on Constructive Methods for Parallel
Programming, pages 35–47, Stirling, Scotland, UK, July 2004. Universität Münster, Germany.

24. M. Aldinucci, M. Danelutto, A. Paternesi, R. Ravazzolo, and M. Vanneschi. Building interoperable grid-aware
ASSIST applications via WebServices. In G. R. Joubert, W. E. Nagel, F. J. Peters, O. Plata, P. Tirado, and
E. Zapata, editors, Parallel Computing: Current & Future Issues of High-End Computing (Proc. of PARCO 2005,
Malaga, Spain), volume 33 of NIC, pages 145–152, Germany, Dec. 2005. John von Neumann Institute for
Computing.

25. M. Aldinucci, M. Danelutto, and M. Vanneschi. Autonomic QoS in ASSIST grid-aware components. In B. D.
Martino and S. Venticinque, editors, Proc. of Intl. Euromicro PDP 2006: Parallel Distributed and network-based
Processing, pages 221–230, Montbéliard, France, Feb. 2006. IEEE.

26. M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and C. Zoccolo. Dynamic
reconfiguration of grid-aware applications in ASSIST. In J. C. Cunha and P. D. Medeiros, editors, Proc. of 11th
Intl. Euro-Par 2005 Parallel Processing, volume 3648 of LNCS, pages 771–781. Springer, Aug. 2005.

27. R. Baraglia, M. Danelutto, D. Laforenza, S. Orlando, P. Palmerini, R. Perego, P. Pesciullesi, and M. Vanneschi.
ASSISTConf: A grid configuration tool for the ASSIST parallel programming environment. In Proc. of Intl.
Euromicro PDP: Parallel Distributed and network-based Processing, pages 193–200, Genova, Italy, Feb. 2003.
IEEE.

28. P. D’Ambra, M. Danelutto, D. di Serafino, and M. Lapegna. Advanced environments for parallel and distributed
applications: a view of current status. Parallel Computing, 28(12):1637–1662, 2002.

29. M. Danelutto. Dynamic run time support for skeletons. In E. H. D’Hollander, G. R. Joubert, F. J. Peters, and
H. J. Sips, editors, Proc. of Intl. PARCO 99: Parallel Computing, Parallel Computing Fundamentals &
Applications, pages 460–467. Imperial College Press, 1999.

30. M. Danelutto. Adaptive task farm implementation strategies. In Proc. of Intl. Euromicro PDP: Parallel
Distributed and network-based Processing, pages 416–423, La Coruna, Spain, Feb. 2004. IEEE.

31. M. Danelutto. Irregularity handling via structured parallel programming. Intl. Journal of Computational Science
and Engineering, 3-4, 2005.

32. M. Danelutto. QoS in parallel programming through application managers. In Proc. of Intl. Euromicro PDP:
Parallel Distributed and network-based Processing, pages 282–289, Lugano, Switzerland, Feb. 2005. IEEE.

33. M. Danelutto, C. Migliore, and C. Pantaleo. An alternative implementation schema for ASSIST parmod. In Proc.
of Intl. Euromicro PDP: Parallel Distributed and network-based Processing, pages 56–63, Montbéliard, France,
Feb. 2006. IEEE.

34. M. Danelutto and M. Vanneschi. A RISC approach to Grid. In B. D. Martino, J. Dongarra, A. Hoisie, L. T.
Yang, and H. Zima, editors, Engineering the grid, chapter 8. ASP press, Jan. 2006.

35. M. Danelutto, M. Vanneschi, C. Zoccolo, N. Tonellotto, S. Orlando, R. Baraglia, T. Fagni, D. Laforenza, and
A. Paccosi. HPC application execution on grids. In V. Getov, D. Laforenza, and A. Reinefeld, editors, Future
Generation Grids, CoreGRID series, pages 263–282. Springer, Nov. 2005.

36. D. Laforenza and M. Vanneschi. Grid.it - next generation grid platforms and their applications. ERCIM News,
59:60–61, Oct. 2004.

37. S. Magini, P. Pesciullesi, and C. Zoccolo. Parallel software interoperability by means of CORBA in the ASSIST
programming environment. In H. Kosch, L. Böszörményi, and H. Hellwagner, editors, Proc. of 9th Intl Euro-Par
2003 Parallel Processing, volume 2790 of LNCS, pages 679–688, Klagenfurt, Austria, Aug. 2003. Springer.

38. I. Merelli, L. Milanesi, D. D’Agostino, A. Clematis, M. Vanneschi, and M. Danelutto. Using parallel isosurface
extraction in superficial molecular modeling. In 1st Intl. Conference on Distributed Frameworks for Multimedia
Applications (DFMA 2005), pages 288–294, Besançon, France, 2005. IEEE.

39. N. Tonellotto, D. Laforenza, M. Danelutto, M. Vanneschi, and C. Zoccolo. A performance model for stream-
based computations. In P. D’Ambra and M. R. Guarracino, editors, Proc. of Intl. Euromicro PDP 2007: Parallel
Distributed and network-based Processing, pages 91–96, Napoli, Italia, Feb. 2007. IEEE.

40. M. Vanneschi. Heterogeneous HPC environments. In D. J. Pritchard and J. Reeve, editors, Proc. of 4th Intl.
Euro-Par ’98 Parallel Processing, volume 1470 of LNCS, pages 21–34, Southampton, UK, 1998. Springer.

41. M. Vanneschi. The programming model of ASSIST, an environment for parallel and distributed portable
applications. Parallel Computing, 28(12):1709–1732, Dec. 2002.

42. M. Vanneschi. ASSIST high-performance programming environment: Application experiences and grid evolution.
In J. Dongarra, D. Laforenza, and S. Orlando, editors, Recent Advances in Parallel Virtual Machine and
Message Passing Interface,10th European PVM/MPI Users’ Group Meeting, Venice, Italy, September 29 -
October 2, 2003, Proceedings, volume 2840 of LNCS, pages 24–26, Venice, Italy, 2003. Springer.

23ASSIST References (2002-07 UNIPI+ISTI/CNR only)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

BeSke, GCM, and ORC References
GridCOMP or CoreGrid related
(2007-08 UNIPI+ISTI/CNR only)

1. M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi, P. Kilpatrick, and N. Tonellotto. Management in distributed systems: a semi-formal approach. In Proc. of Intl. Euromicro PDP 2008:
Parallel Distributed and network-based Processing, Toulouse, France, Feb. 2008. IEEE. To appear.

2. M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi, P. Kilpatrick, D. Laforenza, and N. Tonellotto. Behavioural skeletons for component autonomic management on grids. In CoreGRID
Workshop on Grid Programming Model, Grid and P2P Systems Architecture, Grid Systems, Tools and Environments, Heraklion, Creete, Greece, June 2007.

3. M. Aldinucci, M. Danelutto, and P. Kilpatrick. Adding metadata to orc to support reasoning about grid programming. In T. Priol and M. Vanneschi, editors, Towards Next Generation
Grids (Proc. of the CoreGRID Symposium 2007), CoreGRID series, pages 205–214, Rennes, France, Sept. 2007. Springer.

4. M. Aldinucci, M. Danelutto, and P. Kilpatrick. A framework for prototyping and reasoning about grid systems. In G. R. Joubert, C. Bischof, F. Peters, T. Lippert, M. Bücker,
P. Gibbon, and B. Mohr, editors, Parallel Computing: Architectures, Algorithms and Applications (Proc. of PARCO 2007, Jülich, Germany), NIC, Germany, Sept. 2007. John von
Neumann Institute for Computing.

5. M. Aldinucci, M. Danelutto, and P. Kilpatrick. Management in distributed systems: a semi-fomal approach. In A.-M. Kermarrec, L. Bougé, and T. Priol, editors, Proc. of 13th Intl. Euro-
Par 2007 Parallel Processing, volume 4641 of LNCS, pages 651—661, Rennes, France, Aug. 2007. Springer.

6. M. Aldinucci, M. Danelutto, and P. Kilpatrick. Orc + metadata supporting grid programming. Technical Report TR-07-10, Università di Pisa, Dipartimento di Informatica, May 2007.

7. M. Danelutto, M. Aldinucci, and P. Kilpatrick. Prototyping and reasoning about distributed systems: an orc based framework. Technical Report TR-0102, Institute on Programming
Model, CoreGRID - Network of Excellence, Aug. 2007.

8. P. Kilpatrick, M. Danelutto, and M. Aldinucci. Deriving grid applications from abstract models. Technical Report TR-0085, Institute on Programming Model, CoreGRID - Network of
Excellence, Apr. 2007.

9. M. Aldinucci, C. Bertolli, S. Campa, M. Coppola, M. Vanneschi, L. Veraldi, and C. Zoccolo. Self-configuring and self-optimizing grid components in the GCM model and their ASSIST
implementation. In Proc of. HPC-GECO/Compframe (held in conjunction with HPDC-15), IEEE, pages 45–52, Paris, France, June 2006.

24

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Conclusions

Behavioural Skeletons
templates with built-in management for the App designer

methodology for the skeleton designer
management can be changed/refined

just prove your own management is correct against skeleton functional description

can be freely mixed with standard GCM components
because once instanced, they are standard

Already implemented on GCM
not happy about GCM runtime performances (can be improved)

We also implemented in ASSIST with different performances

25

谢谢!
问题?

Thank you!
Questions?

